Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Lancet Reg Health Am ; 17: 100398, 2023 Jan.
Article in English | MEDLINE | ID: covidwho-2122676

ABSTRACT

Background: The COVID-19 Scenario Modeling Hub convened nine modeling teams to project the impact of expanding SARS-CoV-2 vaccination to children aged 5-11 years on COVID-19 burden and resilience against variant strains. Methods: Teams contributed state- and national-level weekly projections of cases, hospitalizations, and deaths in the United States from September 12, 2021 to March 12, 2022. Four scenarios covered all combinations of 1) vaccination (or not) of children aged 5-11 years (starting November 1, 2021), and 2) emergence (or not) of a variant more transmissible than the Delta variant (emerging November 15, 2021). Individual team projections were linearly pooled. The effect of childhood vaccination on overall and age-specific outcomes was estimated using meta-analyses. Findings: Assuming that a new variant would not emerge, all-age COVID-19 outcomes were projected to decrease nationally through mid-March 2022. In this setting, vaccination of children 5-11 years old was associated with reductions in projections for all-age cumulative cases (7.2%, mean incidence ratio [IR] 0.928, 95% confidence interval [CI] 0.880-0.977), hospitalizations (8.7%, mean IR 0.913, 95% CI 0.834-0.992), and deaths (9.2%, mean IR 0.908, 95% CI 0.797-1.020) compared with scenarios without childhood vaccination. Vaccine benefits increased for scenarios including a hypothesized more transmissible variant, assuming similar vaccine effectiveness. Projected relative reductions in cumulative outcomes were larger for children than for the entire population. State-level variation was observed. Interpretation: Given the scenario assumptions (defined before the emergence of Omicron), expanding vaccination to children 5-11 years old would provide measurable direct benefits, as well as indirect benefits to the all-age U.S. population, including resilience to more transmissible variants. Funding: Various (see acknowledgments).

2.
The International Journal of High Performance Computing Applications ; 2022.
Article in English | Web of Science | ID: covidwho-2098239

ABSTRACT

This paper describes an integrated, data-driven operational pipeline based on national agent-based models to support federal and state-level pandemic planning and response. The pipeline consists of (i) an automatic semantic-aware scheduling method that coordinates jobs across two separate high performance computing systems;(ii) a data pipeline to collect, integrate and organize national and county-level disaggregated data for initialization and post-simulation analysis;(iii) a digital twin of national social contact networks made up of 288 Million individuals and 12.6 Billion time-varying interactions covering the US states and DC;(iv) an extension of a parallel agent-based simulation model to study epidemic dynamics and associated interventions. This pipeline can run 400 replicates of national runs in less than 33 h, and reduces the need for human intervention, resulting in faster turnaround times and higher reliability and accuracy of the results. Scientifically, the work has led to significant advances in real-time epidemic sciences.

3.
BMC Infect Dis ; 22(1): 743, 2022 Sep 20.
Article in English | MEDLINE | ID: covidwho-2038667

ABSTRACT

BACKGROUND: Lockdowns imposed throughout the US to control the COVID-19 pandemic led to a decline in all routine immunizations rates, including the MMR (measles, mumps, rubella) vaccine. It is feared that post-lockdown, these reduced MMR rates will lead to a resurgence of measles. METHODS: To measure the potential impact of reduced MMR vaccination rates on measles outbreak, this research examines several counterfactual scenarios in pre-COVID-19 and post-COVID-19 era. An agent-based modeling framework is used to simulate the spread of measles on a synthetic yet realistic social network of Virginia. The change in vulnerability of various communities to measles due to reduced MMR rate is analyzed. RESULTS: Results show that a decrease in vaccination rate [Formula: see text] has a highly non-linear effect on the number of measles cases and this effect grows exponentially beyond a threshold [Formula: see text]. At low vaccination rates, faster isolation of cases and higher compliance to home-isolation are not enough to control the outbreak. The overall impact on urban and rural counties is proportional to their population size but the younger children, African Americans and American Indians are disproportionately infected and hence are more vulnerable to the reduction in the vaccination rate. CONCLUSIONS: At low vaccination rates, broader interventions are needed to control the outbreak. Identifying the cause of the decline in vaccination rates (e.g., low income) can help design targeted interventions which can dampen the disproportional impact on more vulnerable populations and reduce disparities in health. Per capita burden of the potential measles resurgence is equivalent in the rural and the urban communities and hence proportionally equitable public health resources should be allocated to rural regions.


Subject(s)
COVID-19 , Measles , COVID-19/epidemiology , Child , Communicable Disease Control , Humans , Measles/epidemiology , Measles/prevention & control , Measles-Mumps-Rubella Vaccine , Pandemics , United States/epidemiology
4.
Elife ; 112022 06 21.
Article in English | MEDLINE | ID: covidwho-1903837

ABSTRACT

In Spring 2021, the highly transmissible SARS-CoV-2 Delta variant began to cause increases in cases, hospitalizations, and deaths in parts of the United States. At the time, with slowed vaccination uptake, this novel variant was expected to increase the risk of pandemic resurgence in the US in summer and fall 2021. As part of the COVID-19 Scenario Modeling Hub, an ensemble of nine mechanistic models produced 6-month scenario projections for July-December 2021 for the United States. These projections estimated substantial resurgences of COVID-19 across the US resulting from the more transmissible Delta variant, projected to occur across most of the US, coinciding with school and business reopening. The scenarios revealed that reaching higher vaccine coverage in July-December 2021 reduced the size and duration of the projected resurgence substantially, with the expected impacts was largely concentrated in a subset of states with lower vaccination coverage. Despite accurate projection of COVID-19 surges occurring and timing, the magnitude was substantially underestimated 2021 by the models compared with the of the reported cases, hospitalizations, and deaths occurring during July-December, highlighting the continued challenges to predict the evolving COVID-19 pandemic. Vaccination uptake remains critical to limiting transmission and disease, particularly in states with lower vaccination coverage. Higher vaccination goals at the onset of the surge of the new variant were estimated to avert over 1.5 million cases and 21,000 deaths, although may have had even greater impacts, considering the underestimated resurgence magnitude from the model.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Humans , Pandemics/prevention & control , SARS-CoV-2/genetics , United States/epidemiology , Vaccination
5.
medRxiv ; 2020 Oct 31.
Article in English | MEDLINE | ID: covidwho-915980

ABSTRACT

The COVID-19 pandemic brought to the forefront an unprecedented need for experts, as well as citizens, to visualize spatio-temporal disease surveillance data. Web application dashboards were quickly developed to fill this gap, including those built by JHU, WHO, and CDC, but all of these dashboards supported a particular niche view of the pandemic (ie, current status or specific regions). In this paper, we describe our work developing our own COVID-19 Surveillance Dashboard, available at https://nssac.bii.virginia.edu/covid-19/dashboard/, which offers a universal view of the pandemic while also allowing users to focus on the details that interest them. From the beginning, our goal was to provide a simple visual way to compare, organize, and track near-real-time surveillance data as the pandemic progresses. Our dashboard includes a number of advanced features for zooming, filtering, categorizing and visualizing multiple time series on a single canvas. In developing this dashboard, we have also identified 6 key metrics we call the 6Cs standard which we propose as a standard for the design and evaluation of real-time epidemic science dashboards. Our dashboard was one of the first released to the public, and remains one of the most visited and highly used. Our group uses it to support federal, state and local public health authorities, and it is used by people worldwide to track the pandemic evolution, build their own dashboards, and support their organizations as they plan their responses to the pandemic. We illustrate the utility of our dashboard by describing how it can be used to support data story-telling - an important emerging area in data science.

SELECTION OF CITATIONS
SEARCH DETAIL